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A hierarchical framework for solving the driving tasks
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Motivation

* End to end offline learning doesn’t work well
 Hard to tune even in a single scenario
* Chaotic and redundant (mutated heading information, additional cars) datasets
* No reward information

 Hard to generalize

Can we divide the tasks into several sub-tasks and conquer each sub-task?
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Algorithm 1 RvS-Learning

1: Input: Dataset of trajectories, D = {7}

2: Initialize policy mg(a | s,w).

3: while not converged do

4 Randomly sample trajectories: 7 ~ D.

5 Sample time index for each trajetory, ¢ ~ [1, H], and
sample a corresponding outcome: w ~ f(w | 7¢.1).

6 Compute loss: L(0) < 32 (s, a,.0) logTo(as | s, w)

7 Update policy parameters: 6 <— 0 +nVL(0)

8: end while

9: return Conditional policy mg(a | s,w)

stop
B MDP:

Stop or Go

Module vote
Collision / lane, the relative heading, position and speed of the five closest

State: the bounding box of ego, the speed limit of the current

Detection Rule go vehicles to ego, and the bounding box of these vehicles.

Action: The egos whose speed is less than 0.2 times the speed
limit are assumed to be in a static state. Otherwise, the car is
assumed to be in a moving state.

ngH 1.25m Goal: We set the output of f(w|t.y) to be the waypoints and
' headings in the subsequent next 5 steps
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w/o considering the risk
during/after taking these actions

Bandit Problem




Scheduler: Speed Policies

Classification Problem
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Final speed

For simplicity, the range of speed coefficient is discretized. That is the reason why our method

performs poorly above humanness metric.




Scheduler: Direction Policies
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Note that the moving of the lower-level scheduler cannot be interrupted by Where to Go Module until the

lane changing is completely finished.




Overall Framework

Hybrid learning and heuristic
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