

Predictive Decision-making with Interaction-aware Transformers

Zhiyu Huang

PhD Candidate Automated Driving and Human-Machine System (AutoMan) Lab Nanyang Technological University

6 Dec 2022

About the team

Zhiyu Huang

Haochen Liu

Jingda Wu

Chen Lyu

AutoMan Lab Intelligent Decision-making (AID) Team

- Member: Zhiyu Huang, Haochen Liu, Jingda Wu *
- * Advisor: Prof. Chen Lyu
- Lab Homepage: https://lvchen.wixsite.com/automan *
- Project Code: <u>https://github.com/MCZhi/Predictive-Decision</u>

Introduction

Solving real-world autonomous driving

Learning for decision-making

- Reinforcement Learning: good testing performance, low data efficiency, hard-totune reward function
- Imitation Learning: efficient training, no reward engineering, poor testing performance due to distributional shift
- Model Predictive Control: better generalization and safety guarantee, high requirements on predictive models (where learning kicks in)

Framework

- Planner: trajectory generation ⇒ evaluation ⇒ execution
- Predictor: multi-agent multi-modal future trajectories of interacting agents

Predictor

Yuan, Ye, Xinshuo Weng, Yanglan Ou, and Kris M. Kitani. "Agentformer: Agent-aware transformers for socio-temporal multi-agent forecasting." In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9813-9823. 2021.

Predictor

Planner

- Trajectory Generation
 - 1) Get available paths from the observation
 - Generate speed profiles along the longitudinal direction in Frenet space
 - Generate displacement profiles along the lateral direction in Frenet space
 - Combine longitudinal and lateral coordinates in Frenet space and translate back to Cartesian space

Planner

Planning Setting

Planning/prediction horizon T_h	30 steps (3 seconds)
Observation horizon T_f	11 steps (1.1 seconds)
Number of surrounding vehicles N	5
Number of multi-modal future trajectories M	3

Trajectory Evaluation

Cost function	Linear combination of features $c(\tau) = -\sum_{i} \theta_{i} \mathbf{f}_{i,\tau}$
Features	Goal (Distance to goal, speed), Comfort (jerk, lateral acceleration), Safety (distance to the nearest obstacle, time-to-collision, collision)
Collision checking	Check if a generated trajectory of the ego vehicle overlaps with the most-likely trajectory of each surrounding vehicle
Emergency	Decelerate to stop at max capacity if all generated trajectories are to collide with other vehicles

Training

Sample from replay buffer/offline dataset

Jiao, Ruochen, Xiangguo Liu, Bowen Zheng, Dave Liang, and Qi Zhu. "TAE: A Semi-supervised Controllable Behavior-aware Trajectory Generator and Predictor." arXiv preprint (2022).

Results

- **Pros**: significantly better humanness and lower rule violations
- **Cons**: lower completion because the planner requires more complete information

Visualization

Intersection/1_to_2lane_left_turn_c

Merge/3lane_single_agent

Thank you for your time! Q&A